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NATIONAL AIWZSORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2124

SPECTRUMS AND DIX’l?USIONIN A ROUND TURBULENT JET .

By Stanley Corrsin and Mah.inderS. Uberoi

SUMMARY

In a round turbulent jet at room temperature, measurement of the
shear correlation coefficient as a function of frequency (through lmnd-
pass filters) has given a rather direct.verification of Kolmogoroff’s
local-isotropy hypothesis.

One-dimensionalpower spectrums of velocity and t~erature fluctu-
ations, measured in unheated and heated jets, respectively, have been
contrasted. Under the same conditions, the two corresponding transverse#
correlation functions have beep measured and compared.

..
Finally, measurements have been made of the mean themal wakes

behind locsl (line) heat sources in the unheated turbulent jet, and the
order of magnitude of the temperature fluctuations has been determined.

II@RODUCTION

At the present time there apparently exists no statistical theory
of turbulent shear flow. One significant theoretical consideration has
been proposed: The hypothesis of local isotropy, originatedby
Kolmogoroff (references 1 and 2). Kolmogoroff has suggested that the
fine structure in turbulent shear flow maybe isotropic; recent experi-
ments of Townsend (references 3 and 4) in a turbulent wake seem to
verify this hypothesis.

In view of this situation, the various experimental researches in
the field follow two courses: First, they attempt to verify or disprove
local isotropy; second, they try in all.conceivable ways to make measure-
ments that may shed light upon the basic nature of the turbulent shear
flow, so that the foundations for a successful theory can be laid.

During recent years it has become evident that measurements of the
intensity of turbulence alone cannot provide sufficient information
about the statistical and dynamical properties of the flow fields. Such
quantities as correlations, spectrums, probability densities, the various
terms in the turbulent kinetic-energy bslance, and so forth maybe
expected to revesl many essential features of the problem.

-.. -. —. .— .-— —— - ---- .-——- ——.—— -.— _—— .—. . . .. _ ..e—



2 NACA TN 21.24

The types of turbulent shear flow that have come under close
experimental.scrutiny are the boundary layer (references 5 and 6) > the . “
plane channel (reference 7), the plane wake (references 3 and 4), the
plane single free-mixing region (reference 8), and the round jet (refer-
ences 9 smd 10). The present work is a continuation of that reported
-inreferences 9 ~a 10.

The general o%~ectives of this investigation have been to learn
someth~g more about the flow in a fully developed round turbulent jet
and shout the heat transfer in such a flow. The work reported here has
fallen into three phases: (a) An attempt to establish the presence or
absence of locsl isotropy, (b) a comparison of velocity- and temperature-
fluctuation fields when the over-all boundary conditions on mean velocity
and temperature are effectively the same, and (c) a study of the diffu- ‘
sion of heat from a local (line) source in the turbulent flow.

.

The only specific experimental verification of local isotropy in
a turbulent shear flow to date was by Townsend in the plane wake behind
a circular rod (references 3 and 4). He found that the skewness and
flattening factors of the probability density of kfit in the shear
flow are very closely equal to those in the (effectively isotropic)
turbulence far behind a grid. Since differentiation emphasizes the
higher frequencies, his measur~ent shows, in essence, that the values .
of certain statistical quantities related to the smaller eddies In a
shear flow are the same as the values for the smsller eddies in isotropic
turbulence. He slso found the microscale of u in the stream direction
to be ne=ly @times the microscale of v in that direction, a relation
which is exactly true for isotropic turbulence.

Until recently, only mean-velocity and mean-temperature distribu-
tions were measured to provide a comparison of the transfer rates of
momentum and of heat in turbulent shear flows with over-sll heat
transfer. ~e previous report in this round-set investigation (refer-
ence 10) included a beginning on the problem of direct comparison of
the velocity and temperature fluctuations as well as some measurements
of velocity-temperature correlations. The fluctuations in a warm turbu-
lent wake have been studied by Townsend.l

Up to the present time, however, there appears still.to be no
successful hypothesis to account for the well-known fact that heat
(and other scslar quantities, like material) is diffused more rapidly
than momentum in a turbulent flow. Thus, more detailed study of the
fluctuations seemed In order.

‘Private comunications, 1949.
,
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The first
quantities) of

real analysis
a homogeneous

.
3

on the diffusive property (for scalar
turbulent field was Taylor’s well-lumwn

work, “Diffusion %y Continuous Movements” (referenc& Xl).

The mean thermal wake behind a line source of heat in a flowing
isotropic turbulence has been carefully measured by Schubauer (refer-
ence 12) in the region close to the source, and by Simmons (measure-
ments reported in reference 13) over”an extended range. Taylor’s theory
of diffusion by continuous movements is directly applicable to the
diffusion from a line source of heat in a homogeneous turbulent field,
and he has made a generalization to permit application of the method in
a decaying isotropic turbulence (reference 13).

In a turbulent shear flow, the only published measurements 6f the
thermal wake of a local source seem to be those of Skramstad and Schubauer
in a turbulent boundary layer.2 These were reported by the experimenters
(reference 14) andhy Dryden (reference 1s). The temperature distribution
across the wake in shesr flow is decidedly skew. On the other hand, in
the isotropic turbulence, it is to all intents and purposes a Gaussian
curve. Of course, in a homogeneous field this curve (measured close
enough to the source so that the Lagrangian correlation coefficient is
still effectively unity) is simply the probability density of the lateral
velocity fluctuations. This relation may be roughly true for shear flow
as well, in which case the contrasting results mentioned above would mean
that the probability densi~ of v(t) is skew in shear flow, but Gaussian
in decaying isotropic turbulence.

No measurements had been made of the fluctuations in these thermal
wakes, and it was felt that some information on the nature of these
might help further a genersl understanding of the diffusive process.

This investigation was conducted at the Aeronautics Department of
the Johns Hopkins University under the sponsorship and with the finan-
cial assistance of the National Advisory Committee for Aeronautics.
The authors would like to acknowledge many stimulating conversations
with Dr. L. S. G. Kovasznay, and to thank Dr. F. H. Clauser for his
helpful criticism. Donation of the hot-jet unit byDr. C. B. Mill.ikan,
Director of the Guggenheim Aeronautical Laboratory at the California
Institute of Technology, is greatly appreciated. Mr. Philip Lebowitz
helped to Set up much of the laboratory equipment.

.

2Wieghamit has recently measured the diffusion of heat from a local
source in a turbulent boundary layer (reference 16), but his source was
flush with the solid surface and thus he was studying a different
problem, that is, one more directly related to micrometeorologicsl
conditions.

. . -— .——. . .-+ .- ——.. —--— ——~ —.— .-. —— --—-— —.. ——
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SYMBOLS .

d

x

r

tire=

e

770

dismeter of orifice (1 in.)

axisl distance from orifice

radisl distance from jet axis

sxial component of mean velocity

radisl component of mean velocity

tangential component of’mean velocity

maximum D at a cross section on axis

axial component of imtantaneow velocity fluctuation

- radisl component of instantaneoti velocity fluctuation

tangential component of instantaneous velocity
fluctuation

instantaneous temperature difference (measured above room
temperature as reference)

/

mean temperature difference (measured above room
temperature as reference)

maximum mean temperature difference at a cross section

m@nmm mean temperature in jet at orifice

instantaneous temperature fluctuation (= 19. 3)

time

voltage fluctuation .

sensitivity of a diagonal hot-wire to u and to v,
respectively

— ..
— . —-—.
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Ruv

@,*

nFu,#v

n

nl

k

shear correlation coefficient (~/u’ v’)

instantaneous contributions of u(t) and v(t),
respectively, in a narrow frequency band of nominal
frequency n; in a Fourier series discussion, the
nth harmonic of periodic u(t) and v(t), respectively

she&r correlation coefficient for a narrow band of
frequencies (~/un’~n’); this function is referred

to as the “shear-correlationspectrumn or, briefly,
the “shear spectrum”

phase angles

in Fourier series analysis,
/

#~= an2 ~an2,
1

/
‘Fv=%2~%2) ‘here % ‘d % are Fourier

series coefficients

cyclic frequency”in general; in particular, magnitude
of radial coordinate in three-dimensional frequency
space .,

cyclic frequency of one-dimensional spectrums of u(t)
and i3(t)

wave-number
spectti

wave-nuniber
spectrums

a reference

magnitude for
(tin/U)

constant with

one-dtiensional
wave number

one-dimensional
frequency

three-dimensiond

one-dimensionsJ_

&bnensions of wave numbers

power spectrum of u(t) in terms of

power spectrum of u(t) in terms of ‘

t.- .- -...—..————. —-- -——- —-——. .——. -—
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three-dhuensionalpower spectrum of velocity fluctuation

one--ensi onal
wave number

one-dimensional
frequenty

power spectrum of $(t) in terms of

power spectrum of d(t) in terms of

three+tensional power spectrum of temperature “
fluctuation

transverse correlation function of u

ricslly about jet -S (y-)

ion@ tudinai correlation function of

transverse correlation function of ~

rically clout jet axis (GB)

longitudinal scale of u-fluctuations

longitudinal scale of &fluctuations

measured symnet-

U

measured synm&-

lateral scale of u-fluctuatio~

lateral scale of 79-fluctuations

longitudinal microscale of u-fluctuations

lateral microscale of u-fluctuations

lateral microscsle of d-fluctuations

longitudinal.microscale of #-fluctuations

distance downstream from local heat source in x-direction

lateral distance, perpendicular to source line, from
local heat source

dimensionless temperature ratio ~fi~ 4

standsrd deviation of mean-temperature distribution in
wake behind local heat source

pulse spacing

.

——— — .—.. ..- ._— — —-—
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7

pulse height

pulse width

EQUIPMENT

Aerodynamic Equipment

The l-inch hot-jet unit is shown schematically in figure 1. The
centrifugal blower is driven by a l/2-h”orsepowerdirect-current motor.
Heat is added through two double banks of coils of No. 16 Nichrome @re.
As can be seen in the sketch, a good part of the heated air is directed
around the outside of the jet-air pipe in order to maintain a flat
initisl temperature distribution in the jet. A vacuum-cleaner blower
iE used to help the air through this secondary heating annulus, and this
warm air is fed back into the intake of the main blower.

The section of relatively high velocity between heaters and finsl
pressure box permits adequate mixing behind the grid, to insure thermally
homogeneous initial jet air. ,

Figure 2 is a photograph of the unit as set up previously (refer-
ence 10); the present arrangement is essentially the same. .

All turbulence measurements were made with an initial jet totsl
head in the range from 3.5 to 5.0 inches of water. In free turbulent
flows there is no detectable effect of,jet Reynolds numiberover a much
wider range of Reynolds numbers than this.

When the jet was run unheated, there was a,slight temperature rise
through the blower and duct. In the measurements of thermsl wake behind
a local heat source, correction for this ambient-temperature field was
unnecessary. For all hot runs, the orifice air temperature was very
close to 200° C, about 175° above room temperature.

Three different “local heat sources” were tied:

(a) A straight dismetrically strung wire of O.008-inch Nichrome

(b) A 2-inch-diameter I’?ichromering

(c) A k-inch-dismeter Nichrome ring

Because of the etiremely high turbulence levels encountered in a free
jet, a measurable thermal.wake could onlybe obtained by using source
temperatures in the range from 300° to 700° C. This undoubtedly led to
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.

some local buoyancy effects, but, even with this order of
the thermsl wake was barely detectable linch downstream.

The Reynolds numbers of these heat-source wires were
follows:

, .
For”straight wire Oriaxis,

For 2-inch-dismeter

For 4-inch-diameter

150, based on air temperature
22, based on wire temperature

-,

110, based on air temperature
16, based on wire temperature

ring,

temperatures,
*

about as

59j based on air temperature
9, based on wire temperature

No noticeable additional turbulence was generated by these wires, and .

no average momentum defect could be detected with a flattened total-
head tube, even as clos’eas 1/4 inch downstream.

Measuring Equipment

The measuring instruments used were: Total-head tube, Chromel-
Alumel thermocouple, and hot-wire anemometer (also used as resistance
thermometer).

The hot-wires were nominally ().000635-centimeterplatinum, about
1.5 millimeters in length, etched frcnnWollaston wire. The etched
platinum was soft-soldered to the tips of small steel needle supports.
A discussion of heat loss from a wire at variouE cmibienttemperatures
is given in appendix A. ,’

The basic hot-wire-anemometry equipment was purchased from
Mr. Cal L. Thiele of Altadena, California. One of the two identical
heating circuits is shown in figure 3.

The amplifier, with resistance-capacitance compensation network,
is given in figure 4. The uncompensated gain is cons’tantto within
fi percent over a~requency range from 3 to 12,000 cycles per second
(fig. 5). With the tires and operating conditions used (time constants
on the order of 1 millisecond), the over-all compensated response was

.

good over the same range. Correct setting of the compensation network
was determined by mrperimpostng a square wave upon the hot-wire bridge .
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(reference 17). Unfortunately, in a free turbulent shear flow the
smbient disturbance is so great (because of the extremely high turbu-
lence levels) that calibration cannot be made in the flow to be studied.

The vacuum-themnocouple signal output was measured either with a
millivoltmeter or by the average deflection rate of a fluxmeter.

The various spectnnns reported here were measured with a modified
GenersJ.Radio Type 760-A Sound Analyzer (reference 18). The changes
in output stage (fig. 6) were made to eliminate the direct-cur=nt
component and to obtain linear instead of logarithmic response. As
modified, the sound analyzer had rather undesirable fTequency-response
characteristics,particularly a day-to-day shift in relative amplifi-
cation of the higher-fz=’~ency ranges. The frequency-response calibra-
tion ih figure 7 is plotted in terms of voltage squared, since this was
the quantity ultimately measured.

The frequency pass band for this analyzer is far from the optimum
rectangular shape. However, the slopes of the two sides are suffi-
ciently steep that no appreciable error is attributable to noninfinite
slopes, with the spectrums measured in this investigation. Figure 8 is
an experimentally determined band shape., There was fair similarity of
band shape over the entire frequency range. Forcomputational purposes,
an equivalent rectangular pass band was defined as indicated in the
figure.

The instrument is a type recording constant-percentbandwidth,
measuring the product of power spectrum times frequency. This has
obvious advantages in the high-frequency range where there is so little
turbulent energy.

Possibly the chief disad=tage of the actual.band shape is the
extremely sharp peak, causing a great deal of fluctuation in the output
signal, smd msking any simple meter-reading technique virtually impos-
sible in the low- and medium-frequency ranges. Consequently an inte-
~ating technique was devised, making use of the negligible restoring-
torque characteristics of a Sensitive Research Company fluxmeter. The
Integrating technique used is shown schematicallyin figure 9. Actually
a bank of vacuum thermocouples was used, and the resistances shown are
just typical vslues. The signal put out by the thermocouples is a
highly fluctuating direct current.

The buc?sing
of requirements:

(a) For the
ob.{ainedonly by

circuit was necessitated by the follr%ing combination

lowest frequencies reasonable consistency couldbe
integrating over periods as long as 3 minutes

—.
___ .. .._— —- -.—-—- -—. -—- —--- .—— ...— .— — - --— — - — —- .—
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(b) Appreciable static besring friction in the fluxmeter demanded
more or less continuous motion of the needle ,.

(c) The ‘restoringtor~”e of the fluxmeter is no longer negligible
in the range of very large deflection. Hence it was desirable to keep
total deflection to a minimum.

Thus, most of the-average direct-current component of the thermo-
couple signal was bucked out, and the constant bucking current was read
on a precision microammeter. The fluxmeter needle fluctuated more or
less about the zero-deflectionpoint during the time of integration,
and its reading at the end of this time ordinarily gave a small correc-
tion on the result.

~ the highest-frequency range, overload considerations on the
sound anslyzer limited the signsl drastically, and only a part of the
thermocouple direct current was bucked.

For the determination of average wake temperatures behind the local
heat sources, the thermocoirplevoltage was measured with a Leeds &
Northrup type K-2 potentiometer.

Oscil.logrsmswere taken from a blue oscilloscope tube by means of
a General R~o Type 651-AE csmera, using

PROCEDURES

fast film= ‘ - .

Velocity Spectrum

The power (or energy) spectrum of the longitudinal velocity fluctu.
ations at a point in the unheated jet was measured by conventional hot-
wire-anemometry technique, with a continuously adjustable band-pass
filter, as described under EQUIPMENT.

Temperatum Spectrum

The power spectrum of the tempenture fluctuations in the heated ,
jet was measured bytiing -thehot-yfre’’effec>ivelyas a simple resis-
tance thermometer (reference 19). The’s@lfied voltage signal was
analyzed exactly as in the measurement OX velocity spectrums. .

.

.— ——— ——
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Shear-Correlation Spectrum .

For the shear-correlation spectrum, the quantity to be measured is
the correlation coefficient %etween a narrow frequency band of
u-fluctuations and the same narrow frequency band of v-fluctu@ions, at
the same point in the flow field.

The method, for any particular nominal frequency, was to pass the
VariOUS VO1-LWR sigI.sJJ3(elj epy el + e2, el - e2) from an x-type

shear- (or v’-) meter through the band-pass filter after amplification.
By appropriate conibinationof the mean-square values of these four
signals (identical with total-shear measurement), there results

where the subscript n indicates the narrow band of nominal frequency n
cycles per second. A justification for the validityof this procedure
is obtainable by considering the two velocity-fluctuation components as
periodic functlons~ Of course, this is not a red. proof.

If a symmetrical x-meter is assumed, the two instantaneous voltage
signals are

e~=all+pv

‘2 =oal- pv }

For periodic fluctuations,

a-l }

(1)

(2)

n=l J’
In this simple case, the
is merely

correlation coefficient for any spectral line

n%v ‘ COS @ - $J (3)

.

.
—-.-_——. ..— ___ ..__— _—. _ ..— -— —. .— —. —--- —.._.
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~f equations (Z?)are substituted into equations (1}, it is easily
shown that

~— - .eO2

COS (@n- *n) =
UL Uc

(4)

(el + ‘2~ n(el - ‘2~

in complete analogy to the
an x-meter. The algebraic

When the meter is not
the formsl processes,”both
involved. Consequently, in actual practice the effect of unavoidable
unsymmetry in the X-meter was essentially nullified by taking double sets
of readings at each frequency, rotating the instrument 1800 about the
axis of flow direction between sets.

b

conventional method for measuring ~v with
details are given in appendix B.

.-
perfectly symnetricsl (al + q; B1 + P2))
algebraic and experimental,become excessively

.VelocityCorrelation Function

The double correlation Ry between longitudinal velocity fluctu-
ation at pairs of paints on opposite sides of the jet axis was measured
only in the unheated jet. Hence the standard hot-wire-anemometrytech-
nique was used. The two hot-wires were slways equidistant from the
axis (on.a dismeter), so that they were under identical operating
conditions.

Temperature Correlation Function “

In the hot jet, the wires traversing symmetrically as for ‘Y were
operated as simple resistance thermometers, so that the double temperature
correlation S~ could be determined directly. “

.
Mean Temperatures behind Local.Source

To determine mean tempe~tures behind a local source, traverses
were made with a Chromel-Alumel thermocouple, whose voltage was measured
with a Leeds &Northrup type K-2 potentiometer.

.
Temperature Fluctuations behind Locsl Sources

To determine temperature fluctuations behind local sources, the
fine platinum wire was operated at small currents, so that it worked
essentially as a resistance thermometer.

.

,1

-,

. —
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Mead-velocity and mean~temperature distributions for various
orifice temperatures are presented in reference 10.

was

Shear-Correlation Spectrum

The spectrum of shear correlation coefficients ~~v = ~/un’~n’
measured in the unheated jet at x/d = 20 at a radial station corre-

sponding to maximum shear at this cross section. Figure 10 shows quite
definitely that nRuv(n) is a function decreasing monotonically to zero.

Thus, the hypothesis of local isotropy is seen to be verified in a very
iU.rectway. The value of the directly measured total-shear correlation
coefficient NV = T17/u’v’ is indicated in the figure.

The

velocity

Velocity and Temperature Spectrums ~

one-dimensionalpower spectrum Fl(kl) of the longitudinal

fluctuations u(t) was measured at two radisl,positions in
the unheated jet, at x/d = 20. Figure 11 gives the h-spectrums, one
measured on the axis, and one measured at about the mqximum-shear
location. Plotted against wave number (kl =K%a@), the two spectrums ,

- identical within the e~’erimental scatter. The solid line drawn as
approximation to the points is made up as follows:

(a) For 0<kl<l.25, it is Von K= ‘s semiempirical formula
(reference 20):

4a=F~$j5/,. . ‘?)

(b) For ~> 1.25, a nonanalytical curve”has been faired in

The Von K= expression was used ~rimarily to simplify the
‘ problem of extrapolation to kl=O and to shorten the work of trans-

formation to three-dimensional spectrums. (See “Velocity and Temperature
Spectrums” under ANALYSIS OF RESULTS.)

The corresponding one-dimensionalpower spectrums of temperature
fluctuations Gl(kl) were measured in the heated jet Go = 170° C)
at x~d = 20. One spectnnn is on the jet axis; one is at about the

I

—-——— - ——— . . . . . . .. —. ——-— — ..-—
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radial station of ma@um heat transfer (and shesr). From figure 12, it
can be seen that they differ noticeably in the high-frequency range, but
are essentially identical in the low- and moderate-frequency ranges.
The curves used to approximate the experimental points are as follows:

.

On the axis - the Von K_ formula is used over the entire range

. At the maximum-heat-transferpoint -

(a).For O < kl <1.0, the Von Kd%dn formula is Used

(h) For kl >1.0, a nonanalytical curve has been faired in

Figures 13 and 14 contrast velocity spectrums with temperature
spectrums at corresponding radial stations.

Transverse Correlation Functions

The double correlation.function ~ = ulu@l’~’, measured symmet-

rically about the axis at x~d = 20 in the unheated jet, is plottqd
in fi~e 15. Of course, since the wires are in identical.
tions, U1’ = ~’ s u~ (say), md Ry = ~~.

The double correlation function sy=3@2/31’@ in

jet at x/d = 20 is plotted in figure 16. Since this was
symmetrically, Sy = ii1L92/ti~,where $1’ = 02’ = 0’ (may).

flow condi-

,,
the heated

slso measured

Clearly, the range of measurable temperature correlation exceeds
the range of measurable velocity correlation by an amount greater than
can be attributed simply to the fact that the hot jet is wider than the
unheated jet (reference 10).

.

Mean Thermal Wakes behind Local Heat Sources

Typical radial distributions of avezw.getemperature behind a .
straight (diametrical)wire, a 2-inch-diameter ring, and a 4-inch-
diameter ring at x/d = 20 in the unheated jet are shown in figures 17,
18, and 19, respectively. The points in these figures are not direct
experimental points, but merely serve’to indicate the faired results
for different distances downstream. All these have been corrected for
the previously mentioned small ambient-temperaturefield in the unheated
jet. There was rather lsrge scatter (illustrated only in fig. 20) due a

to the small temperature differences measured and to the extremely large
degree of fluctuation present. The 4-inch ring is slightly outside of
the fully turbulent jet core (reference 9); consequently the results for

>

-.
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this case are not of direct interest in a study of fully developed
turbulence. The figures show that each of the thermal wakes possesses
similarity well within the accuracy of measurement.

All of the thermal wakes spread linearly in the measured range
(figs. 21, 22, and 23). From Taylor’s theory of diffusion by continuous
movements, this simply indicates that, for the maximum downstream station
studied, the Lagrangian correlation coefficient of the v-fluctuations
has still.not departed appreciably from unity.

For a straight-line source at the jet axis, because of conservation
of heat, it follows immediately from shnilarity and linear spread that
the madmum temperature at a cross section in the wake F- must

decrease hyperbolically with increasing downstream distance.
Let ~~m = @(~), where ~ = ~/b ad b is some characteristic

.

width of the wake, for example, the ~ at which @ = 1/2; conservation
of heat gives

where the

where

mean-velocity

The same is true of the
that 5 << r.

rm

~ d< . Constant

changes are neglected. Then,

annular wake in the range of ~ so smsll

b

(6)

(7)

Single traverses were sllsomade behind a straight-line heat source
.

for two other cases:

(a) With the line source set perpendicular to r at a radius of
1 inch, a temperature traverse was made in the r-direction,
at 5 = 1/2 inch (fig. 24)

(b) With the line source set on a diametral line, a temperatuzw
traverse was made perpendicular to r at a radius of 1 inch;
~ = 1/2 inch (fig. 25)
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Temperature Fluctuations behind Local.Heat Source
-,

As can be anticipated, the temperature fluctuations close behind
a locsl heat source are quite different in nature from the velocity
fluctuations at the ssme point or from the temperature and velocity
fluctuations in a turbulent flow with over-all heat transfer. Since a
suitable source produces no additional turbulence,3 the velocity fluc-
tuations.shouldbe the same as in undisturbed flow. On the other hand,
the “turbulent” thermal wake close to the source must be simply a very
narrow lsminar thermal wake which is fluctuating in direction as v(t)
fluctuates. Since sll of the fluid outside of this unsteady laminar
wake is of constant temperature and the temperature fluctuations can
onlybe positive, the general character of the osc~llogram of $(t) in
figure 26 is understandable. These records were tsXen about 3/8 inch
downstream from the straight-lihe heat source, and about 3/16 inch off
the wake sxis. All of the oscillograms were made with insufficient
compensation for the hot-wire themal lag, in order to suppress the
_(highfrequency) noise and thus permit the basic form of O(t) to
stand out. From these two oscillogrsms of u(t) and check measurements
of the turbulence levels for the two cases, it appears that the source
wire has made no appreciable change in the turbulence.

Measurements of the intensity of the temperature fluctuations
across a section at ~ = 0.4 inch are given in figure 27. In the same
vicinity the tiues of u’/~ and vi/~ me on the order of 20 percent.”
The extremely high values of $’/i5 are not surprising since the mean
temperature difference is due only to the presence of the fluctuation.
Since the simple-resistance-thermometertheory is based upon the assump-
tion of small fluctuations compared with absolute temperature (refer-
ence 19), it is expected that these measurements are about as accurate
as themeasurements of much lower 0’/3 in the hot jet (reference 10).

1

ANALYSIS OF RESULTS

Shear-Correlation Spectrum

A very convenient check upon the shear-spectrum measurements can
be gotten by the simple expedient of computing the total (or “net”)
turbulent shear correlation coefficient (which was also directly
measured) from this spectrum and the turbulent-energy spectrum. Again,
an elementary Fourier series treatment serves to justify (not prove)

3k ide~ sowce would slso produce no average momentum defect.
However, as mentioned previously, the momentum wakes of the locsl sources ,
were relatively so small as to be completely undetectable as close as
1/4 inch downstream.

● ,

—.
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the.intuitive idea that the total correlation coefficient Ruv is

simply aweighted average of the n~v (i.e., the cosines of the phase

angles), weighted simply by the product of the square roots of the
energy spectmms of u and v. The calculation is given in appendix B,
and yields the relation

Ruv = ~(~u ~Fv)1/2 nRuv (8)
n.1

Unfortunately, 25 cycles per second is the lower limit of the
measured frequency range, so that some extrapolation must be made to
lower frequencies which contain much of the turbulent energy. Since no
theoretical basis yet exists to guide this extrapolation (like the “
Von K- formula in the case of energy spectmms), guesses had to be
made as to the ~imum and minimum of reasonable-looking extrapolation
curves. These are plotted in figure 28, along with the energy spectrum
of the u-fluctuations. Since no spectrum of the v-fluctuations was
measured, the expression actually used for computing ~v is

(9)

The best of the three e~rapolations tried (extrapolation @))
gives ~v = O.~, which is satisfactorily close to the directly

measured value of 0.44j esPeci~~ since there is no reason to suppose
that the spectrum of the v-fluctuations is identical with the spectrum
of the u-fluctuations, except in the range of local isotropy.

Velocity and Temperature Spectrums

The one-dimensional spectrum of velocity and temperature fluc_&u-
ations, as plotted in figures n-and 12, respectively, are area-
normalized; that is, they are defined such that

J
m

Fl(kl) dkl = 1.0

0

/’
m

Gl(kl) dlq =,1.0

Jo

(lo)

(R)

.. —.-— .. ——. .— .-. -—. —- —.—. .—. ..— _—. --- ——.—.——.——.
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However, the ori@al measurements were made on an alsolute-val.ue
basis, so that the total fluctuation levels u’/fi and 19’/e could
be used as checks on the spectrums. The spectrums as measured
were Fl*(nl) and Gl*(nl), defined such that, idep.lly,

!
w

-E (12)Fl*(nl) fil = u

o.

J
co

7
‘l*(nd ‘il ‘o

o

Integration of F1* as indicated in equation (12) yielded the
fouowing:

On the axis (r= O),

(J )

w 1/2
1= F1* dnl = 0.28
u

o

(u‘fi .0.22, directly measured)

(13)

In the maximum-shear region (r = 4.0 cm),

l/2

(/ )

w

1
Fl* dnl = 0.52

E
o

(u‘K = O.@, directly measured)

Similar integration of the measure~ temperature spectrum in the
heated jet yielded the following:

On the sxis (r= O),

directly measured)

,

.-.— -—..-.

.

,-
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In the maximum-shear region (r = 4.8 cm),

(79‘/3 = 0.36, directly measured)

On the jet axis, yhere conventional small-perturbationhot-wire
theory may still be moderately accurate, the agreement is satisfactory.

It should be noted in passing that these directly measured values
of o’/~ are appreciably higher than those reported in reference 10.
No explanation for this difference is apparent.

The longitudinal
mately from the power

.

which follows from the

1
I
gcale of u-fluctuations is obtainable approxi-
3pectrum:

Lx =:F1(0)

fundamental Fourier

●

(14)

transformation,

in the limit kleO.

Fl(kl) = ;
I

Rx COS (kIx) dx

An analogous treatment
an identical expression for

Within the accuracy of
was found to be the same on
region:

Lx

Jo

.-

(15)

of a temperature-fluctuationfield leads to
the longitudinal scale of &-fluctuations:

(16)

measurement,the longitudinal scale of u(t)
the jet axis and in the maximum-shear

= 3.6 centimeters

—-.—- -- —--.-— — ------- --—---— ———--— ---—-— ---—— —--——- —. —— -——.
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The same was true of the longitudinal temperature scales in the”hot jet: .

Ax = 2.4 centimeters

In all these computations the measured spectrums were extrapolated
to zero wave number with a parabola, as first suggested by Drylen
(reference 21.)> approximately the ssme numerical vslues are obtained
with the Von Kannan formula illustrated in the plotted curves.

In order to compare Lx in the unheated jet with Ax in the

heated jet, Lx maybe multiplied by 1.15, the jet-width ratio

at x/d = 20 for these two initial temperatures (reference 10). The
“corrected” Lx is then 4.15 centimeters.

It must be recslled that the Fourier transformation relation
between time spectrum and space correlation wouldbe exactly true only
if the turbulent fluctuations at a point were due to pure rectilinear
translation (by ~ of a fixed fluctuation pattern. For the free jet
flow, the extremely high turbulence levels make such a tramsforma~ion
very uncertain. Therefore, equations (14) and (16) (and the resulting
scales) can only be considered as crude approximations.

The longitudinal microscale,

[1
l/2

&=_2
Rx”(O)

may also be computed approxwtely from the one-dimensional.
spectrmg, by

(17)

power

(18)

pm

(Primes signify differentiationwhen

Again, an analogous approach to

pca

applied to correlations and spectrums.)

temperate fluctuations gives

* (19)

.

?-J

. .

—
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Unfortunately, the high-frequenty

,

21

rsmges of the ~’s are too

uncertain to permit reasonable extrapolation and the use of equation (19),
although it can be seen from figure 13 that ~ >Zx. However, equa-

tion (18) has been used to compute the longitudinal velocity microscale.
Figure 29 is a plot of the integrand of equation (18). The integration
and appropriate computation give

~ .0.44 centimeter

and the same value for both radial positions.

Since the turbulence on the axis of such a jet seems to be rather
isotropic (the experimental evidence is that ~ = O and u’ ~ v’),
the lateral microscale

[]

2 1/2
x =-—

Ry”(O)
(20)

is of the order of ~/G; that is,

X X 0.31.centimeter

With the assumption of isotropic turbulence on the jet axis, it is
possible to compute the three-dimensional power spectrum F(k) from
the one-dtiensional spectrum Fl~kl). Heisenberg (reference 22) has

given the inverse transformation

J
w

F(k)
‘l(kl) = ~ ~(k2 - k12) U

kl

and the desired F(F1) is readily found to be

[
F(kl ) = 2k1 klF1’’(kl)- F1 ‘(k~]

(’a)

(22)

A three-dimensional spectrum computed in this way is given in figure 30.

—.-. - .—a. ,—._ .—.— -—— —- --.
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The corresponding spectral.transfomnations for the three-dimensional
isotropic fluctuation field of a scalar quantity (temperature, for .

example) are simply (reference 23)

(23)

and

G(kl) = -%%’(%) (24)

With the ass tion of isotropic temperab fluctuations on the “
Y)jet sxis, equation 24 has been used to compute G(k).

The three-dimensional velocity and temperature spectrums on the
jet sxis are very nesrly the same - provided that the isotropy assump-
tion is reasonably good. The curve in figure 30, which shows the
genersl nature of both F and G, is simply the transformation of the
Von K& approximations to F1 and ~.

It must be recfied, however, that 1’1 is in the unheated jet,

while ~ is in the heated jet. Although the results of references 9 =
and 10 indicate no essential change in the detailed dynsmics of jet
turbulence as a result of moderate @crease in jet temperature, there
is an appreciable increase in jet width at a given x/d. As mentioned
earlier, the width ratio between ~. = 175° and ~. = 0° is about 1.15
at x/d = 20.

The integral
maybe considered
jet, slthough the

Transverse Correlation Functions

area under the velocity correlation function (fig. 15)
to give a sort of lateral scale of turbulence in the
result is not”associated with any particular region

in the jet.- The conventional expression,

!

m

Ly = ~(r) b (25)

o

gives a scale, Ly = 0.67 centimeter.
,.

.

———— . — ——— ———-
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If a latersl temperature scsle is defined in similar fashion,

/

03

%=
S+ r) dr (26)

o

then for the heated jet at x/d = 20 it turns out that ~ . O.~ centi-

meter from the function as given in figure 16.

Appropriate conqxarisonof these transverse scales may%e had if L=
is multiplied by the jet-width ratio: l.l~Ly= O.~ centimeter, tie

,samevalue as ~. However, the two correlation functions that yield

these net areas are still quite different in shape. The contrast is
shown in figure 31. Clearly, even though the net areas are identical,
there is non.zerotemperature correlation over appreciably greater
distances.

A rough approxhnation”to the microscale of turbulence can be ‘gotten
by guessing at the osculating parabola for Ar = Q. In this particular
case “guessing” is more appropriate than “fitting,” since the jo~ is
entirely extrapolator in nature. Figure 32(a) shows the vertex region
of Ry with the parabola that co~esponds to

[12
l/2

l.= -— 0.28 centimeter
RY’’(0) =

(27)

This value is in surprisingly good agreement with the 0.31 centtieter
obtained from the power spectrum on the axis. In fact, the agreement
must be regarded as fortuitous, since the difference is appreciably less
than the experimental uncertainty.

.
If the temperature-fluctuationfield is again considered analogously,

the transverse microscale of temperature fluctuations (fig. 32(b)) is

[12
l/2

z =-— 0.43 centimeter
Sy’’(o) =

l?orcomparison, 1.15A = 0.32.

(28)

Mean Themal Wakes behind Local Heat Sources

The rate of spread of the thermal.wake close behind a local source
of heat was first used by Schubauer (reference 12) as a means of

—— —---—— ——.—–— ——. .,.-— —–—— —..-.+ ——..— .—.
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measuring the intensity of lateral velocity fluctuations v’/E. A
detailed discussion of this,technique has been given by Taylor (refer- .

ence 13) and need not be repeated here. The results of such a computa-
tion, compared with direct x-meter measurements of v’/U, ~e ~~. .
follows:

,:.) (~’)~e(S)x-metes
o 0.18 0.185

1 .22 .20

2 .40 .30

,

.

~e x-meter measurements were corrected .forthe effects of both u’
and uv upon the slightly unsymmetrical meter.

. .

It is possible to get some additional information about the fluctua-
tion field by computation from the turbulent-heat-tpmsfep equation. In
particular, an estimate of the distribution w across asection of the

r

thermsl wake behind the ltie source maybe made as follows.

The steady turbulent-heat-transferequation for low velocity (negli-
gible viscous dissipation to heat), negligible molecular heat conduction,
and constant density is, in Cartesian tensor notation,

that
that

– az a
‘i~= ()-—q,axk

For the region in the fmmediate vicinity of the jet axis, assume
conditions ?ppro-te those in a ho~ogeneous field of turbulent-;
is, ~=fi=O and fi=Constant.~.

Then equation (29) becomes s~ly

.——

( 30)
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The assumption of small turbulence level implies $~<<%k and
hence

( 31)

This would be a good approximation in turbulence far behind a grid
placed in a uniform stream, but is certainly rather crude here.

The final assumption, that of similarity in the thermal wake, is
well supported by the experimental results. Then let

where A is the standard deviation of the mean-temperature distribution,
and, according to the theory of diffusion by continuous movements, is
therefore proportional to the standard deviation of the probability
density of v(t) as well. Specifically, for a smsll ‘g in a homo-
geneous turbulent flow,

Similarity sllsoimplies that

Equation (7) maybe written

(say)

(33)

( 34)

~HA = Constsmt (7a)

Then, with equations (32), (34),
formed to

dm

~=

or, with equation (33),

b

‘md (7a), equation (31) maybe trans-

:;: (~f) (35)

(36)

●
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Since v’/–& is constant in this a~roximation,

and the boundary cond.ition~ a = O at q = O, gives finally

which is conveniently written in the fom

In figure 33 this function is plotted against (/~ for
1/2 inch downstream from the straight-wire heat source,
center.

DISCUSSION

Local Isotropy

The monotonic decrease to zero in shear

.

( 37)

8

( 38)

.

the traverse
across the jet 1

correlation coefficient
with increasing frequency seems to be decisive evidence for the exis-
tence of local isotropy at stificiently high Reynolds numbers. It is
titeresting to note that the spectral region of negligible shear
(n~ >1000 cps in the present particular determination, for example~
contains only about 1.5 percent of the turbulent kinetic energy in u2.
Of course, this is by no means an indication of the importance of the
e.xktence of local isotropy in a turbulent shear flow. A more perti-

nent comparison would be with figure a, which shows in effect dissi-
pation as a function of frequency. From this it appears that about
90 percent of the dissipation of tukbulent kinetic energy to heat takes
place in essentially isotropic turbulence. This permits the use of the
Taylor expression for dissipation in isotropic turbulence (reference 24).
Of course it also implies that the isotropic relation between longi- .
tudinsl and latersl microscales, u = @h, ~ be fairly accurate
even in the region of high turbulent shear. Furthermore, it @lies a *,

-—--– -- -– — .-
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universal dimensionless spectral function for all turbulent flows, in
the high-frequency region. For turbulence at this Reynolds number, it
appears that a universal part of the spectrum exists only for kl > 7.9,

If 55 In fact, the -~point”which is well beyond the point of slope -—.
3

in this spectrum is just at kl = 1.0.

At this point a few remarks on the appropriate type of measurement
for verification of local isotropy maybe in order. In particular, a
careful distinction must be made between the shear spect~ ~v u

presented in this report and the power spectrum of the randomly fluc-
tuating quantity uv which might be measured with a multiplying circuit
followed bya frequency analyzer.

Local isotropy specifies that restriction to a sufficientlyosmall
domsln in a turbulent shear flow shows up isotropy in the various statis- “
tical properties that are studied within that domain. It implies that
all three components of the frequency (or wave-nuniber)vector must be
large, snd not merely the magnitude of the vector. Clearly then a good
indication of isotropy is zero correlation between orthogonal velocity-
fluctuation components; this means that the highest-frequency parts
Of U, V, and w are uncorrelated with each other. Hence it is clear

that if ~vn decreases to zero, tith increasing frequency, faster than

the product ~’vn’ decreases to zero, local isotropy .exists. In terns

of coefficient, this merely requires that nRuv decrease to ze~

eventually.

I?OWconsider the fluctuating quantity UV. In a turbulent shear
flow iiT# O, so that U* consists of a direct-current component with
superimposed random fluctuations. Since the conventional electronic
techniques eliminate the Ziirectcurrent, the quantityto be analyzed
would be uv - ~ as a function of time. If locsllisotropywe~
present, the lower frequencies of u and v would be rectified in the
multiplying process, and therefore the oscillogram and p?we~ spectrum
of Uv - ~v would have relatively ~eat emphasis on the high frequencies.
In other words, if the naiyely measured power spectrum of uv were used
as an indication of local isotropy, it would show a trend opposite to
that of ~; that is, it would ’decreasemore slowly than the

p~duct un’vn’. In general, the measurement of n~v seems like a

much more specific and direct approach than the measurement of the
power spectrum of uv. Presumably, a (somewhat more complicated)
Fourier series ~scussion like that in appendix B could also %e -carried
out for tilepower spectrum of uv.

.

... ____. . .- . . .- —. .— . -z — —.—— ——— .——— -— ——-—- — -—— .——-—- —---
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Velocity and Temperature Spectrums

The a~srent identi~ of the veloci~ power spectrums Fl(kl) on

the jet axis and in the region of maximum shesr is only appro-te and

has been determined only down to kI = 0.1. There still exists the
possibility of measurable divergence in the lowest wave-number range.
The good degree of agreement indicates that, in diffusing from the region
of maxhum production (near the maximum-shear region) to the region of
maximum dissipation (on the jet Ss), the turbulent kinetic energy has
not done d.nygross migrating in the wave-nuniberspace.

On the other handj the apparent decided difference between temper-
ature power spectrums measured on the axis and in the maxtium-heat-
transfer region seems to indicate such a migration. However, the
considerable scatter at the highest measured frequencies renders.
definite conclusions impossible.,’

Somewhat more specific conclusions can be drawn from the comparison
betweep one-dimensionalvelocity and temperature spectrums. On the jet
axis, for example, in spite of distinct differences between these two
spectrums, it turns out that within the experimental scatter (which is
considerable) the three-dimensionalpower spectmms may be much more
nearly identicsl. The fact that they did in fact come out to be identi-
cal over a ~de range of wave nuniberwhen computed from the empirically
fitted Von Karm% formula must certainly be regarded as puke chance.
This is true not only because of the experimental uncertainty, but also
because these spectrums were measured in two similar but different flows,
whose characteristic lengths probably differed by’15 percent.

Kinematic and Themal Scsles

From the extrapolated zero-wave-number intercepts of the one-
dimensional spectrmns, the following longitudinal scales were obtained
at x/d = 20:

Lx = 4.15 centimeters

~ = 2.4 centimeters

This Lx is 15 percent greater than the unheated-jet value, tQ allow
for the greater width of the heated jet. Thus, Lx/Ax=l”7” ha
homogeneous, isotropic field of velocity and temperature fluctuations,
it turns out (reference 23) that, if the three-dimensional power
spectrums of velocity and temperature are proportional, Lx/~ = 1.50.

“

-— -- — .——



NACA TN !2124 . 29

It may slso be noted that, if the measured ratio were in an isotropic

field, ~
LY =2X ‘d AY= AX’

so that Ly/Ay = 0.85. The ideal value

would be 0.75. Actually, the integrals of the transverse correlation
functions Ry and Sy are considerably less than the scales that

would be expected, according to these relations, in a homogeneous
isotropic turbulence.

On the other hand, the relative values of longitudinal and lateral
kinematic microscales follow ‘theisotropic relation, ~=@., at
least within the experimental uncertainty. This is on the order of
@5 percent in the case of the parabola “fitted” at the vertex of Ry.

Unfortunately, the tempe~ture spectrum on the jet axis is not
extended sufficiently far to permit computation of longitudinal micro-
scale lx there. The spectmms in figure 13 show only that 2X “is

considerably less’than Xx; that is, lx is considerably less than
0.44 centimeter. It maybe remarked in passing that isotropy for a
scslar quantity means equality of longitudinal and lateral correlation
functions. The lateral microscsle, Z = 0.43 centimeter, obtained by
“fitting” a parabola at the vertex of Sy seems of reasonable magni-

tude relative to 1.15A = 0.32 centimeter.

Transverse Correlation Functions

Of course, the reason Ly. and Ay as determined by integration

of functions Ry and Sy are not related isotropically to Lx and ~

is that over most of the range of Ar the probes are in decidedly non-
isotropic turbulence. Thus, there is no reason to expect Ly = ~x

or Ay = Ax, when ~ and Ax are computed frcunthe spectrums.

An examination of the behavior of these two symmetrically measured
correlation functions shows that there is nonzero correlation over a
considerable part of the jet, but that the relatively small scales result
from the,rather extensive regions of negative correlation. This behavior
is emphasized by a comparison of ‘Y with the corresponding function in
some typical isotropic turbulence downstream of l-inch-mesh grid (refer-
ence 25). Figure 34 shows the contrast clearly.

It is conceivable that such an extended region of negative corre-
lation is characteristic of turbulent shear flow. However, until some-
one establishes this in a shear flow whose transverse extent is very
large compared with the maximum correlation distance, it may be safer
to guess that the “excess” amount of negative correlation is simply due
to a slight irregiilarwaviag of the jet as a whole. In reference 9 it

— . .——.-— _.._ ———.—-.—.- —. .—-— ———. _ —. — — -——–.—
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was assumed that, since Ry actually goes to zero at large values

of Ar, there is no over-all “whipping” of the jet. However, such a
conclusion does not appear to %e completely warranted.

In the section entitled “Transverse Correlation Functions” under
ANALYSIS OF RESULTS, it was found that in the heated jet Ly%~., On

the other hand, it is well known that the lateral rate of transfer of
heat is appreciably greater than the lateral rate of transfer of
momentum, as was first-foundby Ruden (reference 26) from mean-velocity
and mean-temperature measurements. Since diffusion is essentisJly
Lagrangian in nature, while L and A are Eulerian scsles, the above
results are not necessarily in contradiction. The appreciably greater
distsnce over which Sy ~ O (as contrasted with Ry) may, however, %e

related to the fact that the mesa themsl jet diameter is appreciably
greater than the mean momentum jet dismeter.

Probability Densityof v(t) and w(t)

The mean-temperature distribution close behind the straight-line
heat source on the jet -is is effectively symmetrical, and closely
resembles a Gaussian curve in shape (fig. 20); this shows that the
probability density of v(t) on the axis is more or less Gaussian, as
in isotropic turbulence.

The mean-temperature distributions close behind the two ring heat
sources are decidedly skew. However, some of this skewness seems to
be due simply to the curvature of the line sources. Therefore, the
temperature distribution across the wake of a straight tire set tangent
to the circle r . 1 inch was measured. Neglecttig the effects of-
mean-velocity gradient, this curve (fig. 24) is proportional to the
probability density of the radial velocity fluctuation v(t) in the
shear region. It is seen to.be slightly skew; the skewness factor

is computed directly from this curve.
Skramstad and Schubauer behind a line
layer (reported in reference 15) show

= -0.1

The themal wake measurements
source in a turbulent boundary
a skewness of 0.38. The dif-

Of

ferences in sign and magnitude of these two skewness factors suggest
lateral turbulence-level gradient as the cause. The gradients in v’i~

.

are of opposite sign in these tw6 flows. .

— ..——
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Calculation from figure 25 shows that the
tangential fluctuation w(t) is symmetrical.

31

probability density of the
It may be noted that on the

axis of such sm tially symmetric flow there is no distinction between
radial smd tangential velocity fluctuation; hence figure 20 also applies
to w(t) on the sxis.

Temperature Fluctuations behind Local Heat Source

The extremely high temperature-fluctuationlevels (o’/u > 1.0)
encountered in the wake of the line heat source are easily understood
fr6m a brief consideration of the nature of the temperature field.
Close behind the source, there is just a single narrow laminar thermal
wake which is being blown in random deviations from the ~-directionby
the turbulent fluctuations. The gross turbulent thermal wake is simply
the wedge-shaped region over which this relatively narrow wake wanders.
Hence the total thermal signal at any fixed point in the gross wake
consists simply of a series of pulses, where each pulse corresponds to
an occasion upon which the kminar wake swept over the point. Obviously,
the frequency of occurrence of pulses will decrease monotonically tith
increasing transverse distance from the center of the gross wake.

If this type of temperature signsl is represented schematicall.yby
periodic square pulses of height h, width j, and fundamental wave
length T (fig. 35), then it can be easily deduced that the fluctuation
level is

where it is ‘recalledthat $ = 0 - ~ by definition:

Two pulse spacings of interest are

(1) T = 2j; then d’/T= 1.0

Hence, the measured iwsults for #t/3 seem quite reasonable in
both order of magnitude and in qualitative behavior across the gross
thermsl wake of the locsl heat source.

The distribution of n/3=UW computed f~om the the~ -e,
plus the availability of the measurements of O’/emx ~d V’/Gm~

suggests the computation of the heat-transfer correlation coeffi-
cient 37/d’vl. Unfortunately, when the results of figures 33 and 27

. .

-,-.
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are used, a part of the correlation-coefficientdistribution reaches
impossible values (slightly above unity). It must be”concluded that
the absolute values of ~/~H–k are too inaccurate for such a

computation.

Sources of Error

Aside from the specific instances mentioned earlier in this
section, the sources of experimental error me much the same as outlined
on pages 27 to 28 of reference 10. Additional uncertainties arise in
the spectrum measurements, especially in the higher-frequency range,
because of (a) rapid chsmges in the calibration of the sound analyzer
(band peak response against frequency, fig. 7) and (b) slight static
friction of fluxmeter bearings.

In gener”d, it should be.emphasized that measurements by conven- ‘
tional (small-perturbation)hot-wire anemometry in a flow of this high
level of turbulence cannot be considered as accurate absolute-value
measurements. Even on the jet axis, where the level is a minimum and
conditions are relatively steady, there is no reason to believe that
absolute values are better than within, say, tiO percent of the “correct”
values. However, relative behaviors sre undoubtedly determined, and
dimensionless measures of the type of correlation coefficients are more .
accurate than absolute values. .

I?oneof the measurements reported here have been corrected for
finite length of hot-wires.

SUMMARY OF RESULTS

From measurements in a round turbulent jet at room temperature of
the shesr correlation coefficient as a function of frequency, of
veloci@ and tempe~ature fluctuations with and without jet heating,
and of the mean thermal wakes behind local heat sources, the following
statements may be made:

1. The Kol.mogoroffhypothesis of local isotropy is verified for
the shesr flow in a round turbulent jet. This is concluded from the
monotonic decrease to zero of the shear-correlation spectrum (unvn/un’vn’)

with increasing frequency n.

2. The one-dimensionslpower spectmms of longitudinal velocity
fluctuations and of temperature fluctuations appear to be basically
different.

.,



NACA TN 21.24

3. The three-dimensional
ature fluctuations on the jet

33

power spectrums of velocity and temper-
axis seem to be roughly alike - if the

assumption of isotropy in this region be true. It may then follow that
the difference in the one-dhensional power spectrums is a direct
manifestation of the fact that velocity and heat are vector and-scalar
quantities, respectively.

4. we ratio of longitudinal to lateral scale (for both velocity
and temperature fluctuations) is considerably larger than would follow
from isotropy. Longitudinal scsles are measured on the jet axis, while
lateral scales involve a traverse of most”of the fully turbulent core-
of the jet. .

5. The ratio of longitudinal to lateral kinematic microscale on the
jet axis is about eq~ to the isotropic value.

6. The longitudinal thermsZ microscale (from one-dimensionalpower
spectrums) is less than the longitudinal kinematic microscale, but the
latersl microscsles (from correlation measurements) have the opposite
relation; that is, the thermal is greater than the kinematic.

7. The probability density of the radial fluctuation v(t) on the
jet axis is effectively Gaussian. The probability density in the shear
region is slightly skew.

8. The tempedmre-fluctuation field in the wake behind a local
heat source consists of a randomly waving narrow laminar thermal wake.
Hence the temperature signal at a fixed point is a random-pulse type
of function. Its fluctuation intensity is on the order of 100 percent
on the center line, and increases toward the edges.

The Johns Hopkins University
Balttiore, Md., August 17, 1949

——. ———— ——–————. -—-——
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Al?PENDIXA

HEAT LOSS FROM A WIRE AT VARIOUS AMK@iT ~S

In figure 3 ot reference 19 a rough check was made on the
temperature-variationfirst temn in King’s (reference 27) equation
for the steady static heat loss from a cylinder perpendicular to a
fluid stresm, at low Reynolds numbers. The conventional.form is

i%
—= A+Bfi
R-%

.

(Al)

where

and

R

Ra

%

2*

d*

@

P

‘%

P

i

c1YC2

.

wire resistance

wire resistance at,anibientfluid temperature

w-@e resistance at 0° C

wire length

wire diameter

te~erature coefficient of change of resistivity of wire
material

thermal conductivity of fluid at auibienttempera-

specific heat of fluid at anibienttemperature

density of fluid at ambient temperature
.

current

empiricsl constants

.——

.

—-——
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In.reference 19 the check on A as a function of temperature was
made by assuming the second term in equation (Al.)to be exact in its
temperature variation. Then each measured calibration point at any
velocity and temperature led to a value for A.

The present check was carried out more completelfi a fuJl calibra-
tion curve was run for each ambient temperature. From this, both A
and B were determined. Figure 36 gives the results compared tith

Kingfs predicted variation, using physicsl constants from reference 28.
Each point corresponds to a calibration. The vertical.line through a
point obviously does not represent the over-all uncertainty; it shply
shows the range of values that could be gotten by @wing different
reasonable-look+ng straight lines through the ssme set of original
calibration points. From the figure it can be seen that KingTs equation
predicts the temperature variation of A quite well.. The changed in B

(

ia
the slope of the calibration line in the plot of —

R-% )

against 6

are so small that the experh.ental.scatter is as great as the changes
predicted for these temperature differences.

.

.
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APPENDIX B

MEASUREMENT OF --CORRELATION SPECTRUM

The two voltage signals from an idesllsymmetrical x-meter are

Suppose that the velocity

u=

v=

el=au+pv

e2 =au - fh“1
fluctuations are periodic:

w

.xI)nCos
n=l

Of course, there wouldle no loss in

taken as zero.

For
the

The qumtityto be

two simple hszmonic
phase angle. Thus,

measured is

(2Ymt + ~)

(2Ymt + $R)

1

generality if

(Bl)

. (B2)/

functions the correlation coefficient is

nRuv = Cos (~ - *J

Substitution of equations (B2) into equations (Bl), followed by
trigonometric transformation, gives -

e~= ~[~cos~+Bbncos~)~os2~t-
1

(% sfi @n + j3bn SiR$n) SiZl2YCRt]

(B3)

sil@y

‘(B4)

.

(B5d 4,

.
.
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m

When these two signals are put separately
pass filter that passes ofly the
may be represented as

nel = [
K(% COS ~n

nth harmonic,

+ ~bn COS ~n)

a-nil (B2)

through a narrow band-
the two’output voltages :

Cos 21mt -

where K is an attenuation factc~.

(B6a)

(B6b)

0
For brevity, write

nel = K(& cos %rnt - ~ sin *t) (B6c)

nee = K(Cn cos -t - Dn sin ~t) (B6d)

These filtered signals go next into the vacuum-thermocoupleunit,
‘which puts out the meen-square values,

$~=A$cos2(2mt) -2A=%

Bn2 sin2 (2nnt)

Cos (2Jmt) sin (a-nt) +

.

—. ,-- -—- -- --- — ..—.— .—.-— ... . - . ... .. .——— - ... —..-— —-- . ----- ~.- —,.— -—
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l— ~2=
~n2

where K’ is an

Cn2 COS2(21’mt) -

Dn2 -sin2(2nnt)

2CnDn COS (21fllt)sin (21fIlt)+

over-all attenuation factor.

But, COS2 % Sti2 % ~, and COS SiIl% O, over a large number of

wavelengths.

Thenj within

and when the

(B7)

the approximation,

7— K~
nel (An

-ne22=T 2-cn2+~2- %?) (B8)

expressions for A, B, C, and D are substituted, it
turns out that

0

——
ne12 : ~e22 = 2K’@anlln COS (~n -V*) . (B9)

The necessityof dete-g a and P is ordinarily avoided with
a symmetrical meter, if only the correlation coefficient is required.

The sum and difference of the two wire voltages are

el + e2 =2au=2a z an COS (2Ymt + f&)
1

el -e2= 2f3v= 2~~bn cOS (2~t +Wn)
1 “1 (B1O)

.

.

—.——..
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Filtering gives

.
.

11(’1- e2) = 2Kpbn cos (2ds + %)

Passage through the vacuum thermocouple gives

. ~(el + e2)2 = 2K’a.2~2

1

(Bll)

( )
2~el-e2= 2K‘~2bn2

Combination of equations (Bll), (B9), and (B4) gives the final
result:

%nv=

The computation
coefficient spectrum

- -
2

nel - ne2Z

[

(B12)

n(el + ‘2)2 n(el - ‘2)2

of total-shear correlation coefficient from shear-
suggests itself as a useful check possibility: -

% = =/u’v’ (B13)

with the Fourier series for u and v,

(B14)

..

—.—.—. ——. –-—-— -——— —————— -- .—— -—— ——.. . . ——— —___ .-. ..—.



.

40
. .

and the instantaneous

NACA TN !2124

cross product can be transformed to

‘v= sx %%(COS
n=l m=l

.

ps l-m Cos 21mt

~ Cos 2Ymt - sin ~n sin 2mt) x

sin Vm sin aunt)

The the average of this expression is

or

==~
2$ %bn Co” (@n- *n)

Thus ,

(B15)

In terms of the Fourier coefficients,

~ %bn#U.

%T=

/xm$. “ %12 %12
1

one-d.imensionslenergy spectmms of u and v,

l/2

%v = ~ @U nF~) n%
n=l .

\

.

(B16)

.

are simply the normalized

respectively. Therefore~

(B17)
.
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